

2011 International Workshop on Environment and Alternative Energy

Space-based geoengineering to counteract anthropogenic climate change

Russell Bewick

Contents

Space-based geo-engineering

Political environment

A combined approach

Conclusion

Why geo-engineer?

Fig. Mean global temperature prediction compared with observation

Solomon et al. (2007): Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

Methods of geo-engineering

Solar Radiation Management

Carbon Capture

Fig. The effectiveness, affordability, safety and timeliness ratings of geoengineering methods analysed in a Royal Society report

Shepherd at al. Geoengineering the climate, Report of Royal Society working group on geoengineering, 2009

Previous Proposals

Aim: reduce solar flux by 1.7%

Previous Proposals

Aim: reduce solar flux by 1.7%

Reflectors

Dust

Previous Proposals

Aim: reduce solar flux by 1.7%

Reflectors

Dust

Fig. 3: Positions of the proposed geoengineering methods

Research Aim

- Reduce complexity
- Reduce cost
- Increase timeliness

Research Aim

L₁ Dust Cloud – Scenario

L₁ Dust Cloud – Dynamics

- Dust is effected by solar radiation pressure (SRP)
- Size of effect is determined by the lightness parameter

$$eta = rac{F_{_{SRP}}}{F_{_{g}}}$$

 Mass efficiency follows area-to-mass ratio

$$\propto \frac{1}{R}$$

L₁ Dust Cloud – Dynamics

University of

Strathclyde

Advanced Space
Concepts Laboratory

Fig. Motion of a dust cloud for grains with β =0.061

L₁ Cloud – Results

Fig. Mass required to achieve an insolation reduction of 1.7%

Earth ring system

- Previously investigated by Pearson*
 - Mass = 10^{12} kg
 - Pearson's model did not include solar pressure and Earth oblateness
- This work approaches the concept from the point of view of high area-to-mass ratio orbital dynamics
- The dust ring will accumulate over time

^{*}Pearson, J. et al. (2006). Earth rings for planetary environment control. Acta Astronautica 58(1): 44.

Reference frame

- Three parameters to describe planar orbit:
 - *a,* semi-major axis
 - ϕ , solar radiation-perigee angle
 - e, eccentricity
- Two ways of describing dust grain position
 - f, true anomaly
 - θ, anomaly with respect to the direction of solar radiation
- \bullet λ_{\odot} , position of the Sun

Orbital evolution of dust

released in circular orbit

 grains smaller than 13 μm enter drag and decay.

released in eccentric orbit

- grains smaller than 6.5 μm enter drag and decay.
- Release in eccentric orbit with Sun-pointing apogee needed.

Insolation Change

System must take account of the tilt of Earth's axis

Insolation Change

Mass Requirement

University of Strathclyde Advanced Space Concepts Laboratory

Dust distributions

Mass

Asteroid Material Availability

Sanchez, J.P. and McInnes, C., Accessibility of the resources of near Earth space using multi-impulse transfers, in Astrodynamics Specialist Conference, 2010, AIAA, Toronto, Ontario, Canada

Important Questions

Should we deliberately modify the climate?

Should we implement a global scheme without universal agreement?

Should, or could, we prevent a country from taking unilateral action?

Current Status

Little global consensus on how to tackle climate change

UN Moratorium on geo-engineering testing that threatens biodiversity

First UK geo-engineering experiment postponed pending a review

How much CO₂ do we want?

[2] – Shepherd at al. Geoengineering the climate, Report of Royal Society working group on geoengineering, 2009

SRM Methods

Can we agree which method to use?

Shepherd at al. Geoengineering the climate, Report of Royal Society working group on geoengineering, 2009

There is no silver bullet!

Shepherd at al. Geoengineering the climate, Report of Royal Society working group on geoengineering, 2009

Conclusion

- Space-based geo-engineering is an effective method of geoengineering
- Dust cloud methods reduce the complexity of space-based geo-engineering methods
- There are many political challenges to implementing geoengineering
- Geo-engineering cannot be used as a permanent remedy to climate change
- There are many unknowns regarding geo-engineering and more testing is required

Conclusion

Thank You! Any questions?

Thank you to ESA for their sponsorship to attend this workshop

Russell Bewick russell.bewick@strath.ac.uk